Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nucleic Acids Res ; 51(13): 6540-6553, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37254785

RESUMO

Bacteriophage T7 single-stranded DNA-binding protein (gp2.5) binds to and protects transiently exposed regions of single-stranded DNA (ssDNA) while dynamically interacting with other proteins of the replication complex. We directly visualize fluorescently labelled T7 gp2.5 binding to ssDNA at the single-molecule level. Upon binding, T7 gp2.5 reduces the contour length of ssDNA by stacking nucleotides in a force-dependent manner, suggesting T7 gp2.5 suppresses the formation of secondary structure. Next, we investigate the binding dynamics of T7 gp2.5 and a deletion mutant lacking 21 C-terminal residues (gp2.5-Δ21C) under various template tensions. Our results show that the base sequence of the DNA molecule, ssDNA conformation induced by template tension, and the acidic terminal domain from T7 gp2.5 significantly impact on the DNA binding parameters of T7 gp2.5. Moreover, we uncover a unique template-catalyzed recycling behaviour of T7 gp2.5, resulting in an apparent cooperative binding to ssDNA, facilitating efficient spatial redistribution of T7 gp2.5 during the synthesis of successive Okazaki fragments. Overall, our findings reveal an efficient binding mechanism that prevents the formation of secondary structures by enabling T7 gp2.5 to rapidly rebind to nearby exposed ssDNA regions, during lagging strand DNA synthesis.


Assuntos
Bacteriófago T7 , Proteínas Virais , Bacteriófago T7/genética , DNA/metabolismo , Replicação do DNA , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Conformação Molecular , Proteínas Virais/metabolismo
2.
Methods Mol Biol ; 2478: 75-100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36063319

RESUMO

Recent advances in the design and measurement capabilities of optical tweezers instruments, and especially the combination with multi-color fluorescence detection, have accommodated a dramatic increase in the versatility of optical trapping. Quadruple (Q)-trap optical tweezers are an excellent example of such an advance, by providing three-dimensional control over two constructs and thereby enabling for example DNA-DNA braiding. However, the implementation of fluorescence detection in such a Q-trapping system poses several challenges: (1) since typical samples span a distance in the order of tens of micrometers, it requires imaging of a large field of view, (2) in order to capture fast molecular dynamics, fast imaging with single-molecule sensitivity is desired, (3) in order to study three-dimensional objects, it could be needed to detect emission light at different axial heights while keeping the objective lens and thus the optically trapped microspheres in a fixed position. In this chapter, we describe design guidelines for a fluorescence imaging module on a Q-trap system that overcomes these challenges and provide a step-by-step description for construction and alignment of such a system. Finally, we present detailed instructions for proof-of-concept experiments that can be used to validate and highlight the capabilities of the instruments.


Assuntos
Dispositivos Ópticos , Pinças Ópticas , DNA , Microscopia de Fluorescência/métodos , Nanotecnologia/métodos
3.
Methods Mol Biol ; 2478: 101-122, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36063320

RESUMO

Optical tweezers and fluorescence microscopy are powerful methods for investigating the mechanical and structural properties of biomolecules and for studying the dynamics of the biomolecular processes that these molecules are involved in. Here we provide an outline of the concurrent use of optical tweezers and fluorescence microscopy for analyzing biomolecular processes. In particular, we focus on the use of super-resolution microscopy in optical tweezers, which allows visualization of molecules at the higher molecular densities that are typically encountered in living systems. We provide specific details on the alignment procedures of the optical pathways for confocal fluorescence microscopy and 1D-STED microscopy and elaborate on how to diagnose and correct optical aberrations and STED phase plate misalignments.


Assuntos
Pinças Ópticas , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos
4.
Methods Mol Biol ; 2478: 123-140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36063321

RESUMO

Optical tweezers are widely used to investigate biomolecules and biomolecular interactions. In these investigations, the biomolecules of interest are typically coupled to microscopic beads that can be optically trapped. Since high-intensity laser beams are required to trap such microscopic beads, laser-induced heating due to optical absorption is typically unavoidable. This chapter discusses how to identify, quantify, and control thermal effects in optical tweezers. We provide a brief overview of the reported causes and effects of unwanted heating in optical tweezers systems. Specific details are provided on methods to perform a temperature-independent trap calibration procedure. Finally, an effective temperature-control system is presented, and we discuss the operation of this system as well as the methods to measure the temperature at the optically trapped particle.


Assuntos
Lasers , Pinças Ópticas , Calibragem , Calefação , Temperatura
6.
Nature ; 605(7910): 545-550, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508652

RESUMO

In preparation for mitotic cell division, the nuclear DNA of human cells is compacted into individualized, X-shaped chromosomes1. This metamorphosis is driven mainly by the combined action of condensins and topoisomerase IIα (TOP2A)2,3, and has been observed using microscopy for over a century. Nevertheless, very little is known about the structural organization of a mitotic chromosome. Here we introduce a workflow to interrogate the organization of human chromosomes based on optical trapping and manipulation. This allows high-resolution force measurements and fluorescence visualization of native metaphase chromosomes to be conducted under tightly controlled experimental conditions. We have used this method to extensively characterize chromosome mechanics and structure. Notably, we find that under increasing mechanical load, chromosomes exhibit nonlinear stiffening behaviour, distinct from that predicted by classical polymer models4. To explain this anomalous stiffening, we introduce a hierarchical worm-like chain model that describes the chromosome as a heterogeneous assembly of nonlinear worm-like chains. Moreover, through inducible degradation of TOP2A5 specifically in mitosis, we provide evidence that TOP2A has a role in the preservation of chromosome compaction. The methods described here open the door to a wide array of investigations into the structure and dynamics of both normal and disease-associated chromosomes.


Assuntos
Cromossomos Humanos , Cromossomos , Cromossomos/genética , Cromossomos/metabolismo , Cromossomos Humanos/metabolismo , DNA/química , DNA Topoisomerases Tipo II/genética , Humanos , Mitose , Óptica e Fotônica
7.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34732580

RESUMO

Intraflagellar transport (IFT), a bidirectional intracellular transport mechanism in cilia, relies on the cooperation of kinesin-2 and IFT-dynein motors. In Caenorhabditis elegans chemosensory cilia, motors undergo rapid turnarounds to effectively work together in driving IFT. Here, we push the envelope of fluorescence imaging to obtain insight into the underlying mechanism of motor turnarounds. We developed an alternating dual-color imaging system that allows simultaneous single-molecule imaging of kinesin-II turnarounds and ensemble imaging of IFT trains. This approach allowed direct visualization of motor detachment and reattachment during turnarounds and accordingly demonstrated that the turnarounds are actually single-motor switching between opposite-direction IFT trains rather than the behaviors of motors moving independently of IFT trains. We further improved the time resolution of single-motor imaging up to 30 ms to zoom into motor turnarounds, revealing diffusion during motor turnarounds, which unveils the mechanism of motor switching trains: detach-diffuse-attach. The subsequent single-molecule analysis of turnarounds unveiled location-dependent diffusion coefficients and diffusion times for both kinesin-2 and IFT-dynein motors. From correlating the diffusion times with IFT train frequencies, we estimated that kinesins tend to attach to the next train passing in the opposite direction. IFT-dynein, however, diffuses longer and lets one or two trains pass before attaching. This might be a direct consequence of the lower diffusion coefficient of the larger IFT-dynein. Our results provide important insights into how motors can cooperate to drive intracellular transport.

8.
J Phys Chem B ; 125(30): 8351-8361, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34309392

RESUMO

The combination of DNA force spectroscopy and polarization microscopy of fluorescent DNA intercalator dyes can provide valuable insights into the structure of DNA under tension. These techniques have previously been used to characterize S-DNA-an elongated DNA conformation that forms when DNA overstretches at forces ≥ 65 pN. In this way, it was deduced that the base pairs of S-DNA are highly inclined, relative to those in relaxed (B-form) DNA. However, it is unclear whether and how topological constraints on the DNA may influence the base-pair inclinations under tension. Here, we apply polarization microscopy to investigate the impact of DNA pulling geometry, torsional constraint, and negative supercoiling on the orientations of intercalated dyes during overstretching. In contrast to earlier predictions, the pulling geometry (namely, whether the DNA molecule is stretched via opposite strands or the same strand) is found to have little influence. However, torsional constraint leads to a substantial reduction in intercalator tilting in overstretched DNA, particularly in AT-rich sequences. Surprisingly, the extent of intercalator tilting is similarly reduced when the DNA molecule is negatively supercoiled up to a critical supercoiling density (corresponding to ∼70% reduction in the linking number). We attribute these observations to the presence of P-DNA (an overwound DNA conformation). Our results suggest that intercalated DNA preferentially flanks regions of P-DNA rather than those of S-DNA and also substantiate previous suggestions that P-DNA forms predominantly in AT-rich sequences.


Assuntos
DNA , Pareamento de Bases , Polarização de Fluorescência , Microscopia de Polarização , Conformação de Ácido Nucleico
9.
Nucleic Acids Res ; 48(6): e34, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32016413

RESUMO

Fluorescence microscopy is invaluable to a range of biomolecular analysis approaches. The required labeling of proteins of interest, however, can be challenging and potentially perturb biomolecular functionality as well as cause imaging artefacts and photo bleaching issues. Here, we introduce inverse (super-resolution) imaging of unlabeled proteins bound to DNA. In this new method, we use DNA-binding fluorophores that transiently label bare DNA but not protein-bound DNA. In addition to demonstrating diffraction-limited inverse imaging, we show that inverse Binding-Activated Localization Microscopy or 'iBALM' can resolve biomolecular features smaller than the diffraction limit. The current detection limit is estimated to lie at features between 5 and 15 nm in size. Although the current image-acquisition times preclude super-resolving fast dynamics, we show that diffraction-limited inverse imaging can reveal molecular mobility at ∼0.2 s temporal resolution and that the method works both with DNA-intercalating and non-intercalating dyes. Our experiments show that such inverse imaging approaches are valuable additions to the single-molecule toolkit that relieve potential limitations posed by labeling.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Imageamento Tridimensional , Microscopia de Fluorescência/métodos , Simulação por Computador , Humanos , Método de Monte Carlo , Ligação Proteica
10.
Sci Adv ; 5(3): eaav1083, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30915395

RESUMO

DNA structural transitions facilitate genomic processes, mediate drug-DNA interactions, and inform the development of emerging DNA-based biotechnology such as programmable materials and DNA origami. While some features of DNA conformational changes are well characterized, fundamental information such as the orientations of the DNA base pairs is unknown. Here, we use concurrent fluorescence polarization imaging and DNA manipulation experiments to probe the structure of S-DNA, an elusive, elongated conformation that can be accessed by mechanical overstretching. To this end, we directly quantify the orientations and rotational dynamics of fluorescent DNA-intercalated dyes. At extensions beyond the DNA overstretching transition, intercalators adopt a tilted (θ ~ 54°) orientation relative to the DNA axis, distinct from the nearly perpendicular orientation (θ ~ 90°) normally assumed at lower extensions. These results provide the first experimental evidence that S-DNA has substantially inclined base pairs relative to those of the standard (Watson-Crick) B-DNA conformation.


Assuntos
Pareamento de Bases , DNA/química , Polarização de Fluorescência/métodos , Microscopia de Polarização/métodos , Imagem Individual de Molécula/métodos , Siphoviridae/química , Benzoxazóis/química , Fenômenos Biofísicos , Corantes Fluorescentes/química , Substâncias Intercalantes/química , Modelos Teóricos , Compostos de Quinolínio/química
11.
Nano Lett ; 18(4): 2274-2281, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29473755

RESUMO

The ability to measure mechanics and forces in biological nanostructures, such as DNA, proteins and cells, is of great importance as a means to analyze biomolecular systems. However, current force detection methods often require specialized instrumentation. Here, we present a novel and versatile method to quantify tension in molecular systems locally and in real time, using intercalated DNA fluorescence. This approach can report forces over a range of at least ∼0.5-65 pN with a resolution of 1-3 pN, using commercially available intercalating dyes and a general-purpose fluorescence microscope. We demonstrate that the method can be easily implemented to report double-stranded (ds)DNA tension in any single-molecule assay that is compatible with fluorescence microscopy. This is particularly useful for multiplexed techniques, where measuring applied force in parallel is technically challenging. Moreover, tension measurements based on local dye binding offer the unique opportunity to determine how an applied force is distributed locally within biomolecular structures. Exploiting this, we apply our method to quantify the position-dependent force profile along the length of flow-stretched DNA and reveal that stretched and entwined DNA molecules-mimicking catenated DNA structures in vivo-display transient DNA-DNA interactions. The method reported here has obvious and broad applications for the study of DNA and DNA-protein interactions. Additionally, we propose that it could be employed to measure forces in any system to which dsDNA can be tethered, for applications including protein unfolding, chromosome mechanics, cell motility, and DNA nanomachines.


Assuntos
DNA/química , Substâncias Intercalantes/química , Microscopia de Fluorescência , Nanotecnologia , Conformação de Ácido Nucleico , Espectrometria de Fluorescência , Estresse Mecânico
12.
Methods Mol Biol ; 1665: 3-23, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28940061

RESUMO

Optical tweezers are a means to manipulate objects with light. With the technique, microscopically small objects can be held and steered, while forces on the trapped objects can be accurately measured and exerted. Optical tweezers can typically obtain a nanometer spatial resolution, a picoNewton force resolution, and a millisecond time resolution, which makes them excellently suited to study biological processes from the single-cell down to the single-molecule level. In this chapter, we will provide an introduction on the use of optical tweezers in single-molecule approaches. We will introduce the basic principles and methodology involved in optical trapping, force calibration, and force measurements. Next we describe the components of an optical tweezers setup and their experimental relevance in single-molecule approaches. Finally, we provide a concise overview of commercial optical tweezers systems. Commercial systems are becoming increasingly available and provide access to single-molecule optical tweezers experiments without the need for a thorough background in physics.


Assuntos
Nanotecnologia/métodos , Pinças Ópticas , DNA/química , Proteínas/química
13.
Nat Commun ; 8(1): 2197, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259297

RESUMO

The three-dimensional structure of DNA is highly susceptible to changes by mechanical and biochemical cues in vivo and in vitro. In particular, large increases in base pair spacing compared to regular B-DNA are effected by mechanical (over)stretching and by intercalation of compounds that are widely used in biophysical/chemical assays and drug treatments. We present single-molecule experiments and a three-state statistical mechanical model that provide a quantitative understanding of the interplay between B-DNA, overstretched DNA and intercalated DNA. The predictions of this model include a hitherto unconfirmed hyperstretched state, twice the length of B-DNA. Our force-fluorescence experiments confirm this hyperstretched state and reveal its sequence dependence. These results pin down the physical principles that govern DNA mechanics under the influence of tension and biochemical reactions. A predictive understanding of the possibilities and limitations of DNA extension can guide refined exploitation of DNA in, e.g., programmable soft materials and DNA origami applications.


Assuntos
DNA/química , Modelos Moleculares , Conformação de Ácido Nucleico , Sequência de Bases/genética , Benzoxazóis/química , Fenômenos Biomecânicos/genética , DNA/genética , Elasticidade , Fluorescência , Compostos de Quinolínio/química , Imagem Individual de Molécula/métodos
14.
Elife ; 62017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28287952

RESUMO

In a previous paper (Syrjänen et al., 2014), we reported the first structural characterisation of a synaptonemal complex (SC) protein, SYCP3, which led us to propose a model for its role in chromosome compaction during meiosis. As a component of the SC lateral element, SYCP3 has a critical role in defining the specific chromosome architecture required for correct meiotic progression. In the model, the reported compaction of chromosomal DNA caused by SYCP3 would result from its ability to bridge distant sites on a DNA molecule with the DNA-binding domains located at each end of its strut-like structure. Here, we describe a single-molecule assay based on optical tweezers, fluorescence microscopy and microfluidics that, in combination with bulk biochemical data, provides direct visual evidence for our proposed mechanism of SYCP3-mediated chromosome organisation.


Assuntos
DNA/metabolismo , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Microfluídica , Microscopia de Fluorescência , Imagem Individual de Molécula
16.
Methods Mol Biol ; 1486: 257-272, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27844431

RESUMO

Optical manipulation techniques provide researchers the powerful ability to directly move, probe and interrogate molecular complexes. Quadruple optical trapping is an emerging method for optical manipulation and force spectroscopy that has found its primary use in studying dual DNA interactions, but is certainly not limited to DNA investigations. The key benefit of quadruple optical trapping is that two molecular strands can be manipulated independently and simultaneously. The molecular geometries of the strands can thus be controlled and their interactions can be quantified by force measurements. Accurate control of molecular geometry is of critical importance for the analysis of, for example, protein-mediated DNA-bridging, which plays an important role in DNA compaction. Here, we describe the design of a dedicated and robust quadruple optical trapping-instrument. This instrument can be switched straightforwardly to a high-resolution dual trap and it is integrated with microfluidics and single-molecule fluorescence microscopy, making it a highly versatile tool for correlative single-molecule analysis of a wide range of biomolecular systems.


Assuntos
DNA/química , Pinças Ópticas , Imagem Individual de Molécula/métodos , Análise Espectral/métodos , Calibragem , Microfluídica/métodos , Microscopia de Fluorescência/métodos
17.
Methods Mol Biol ; 1486: 275-293, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27844432

RESUMO

DNA metabolism and DNA compaction in vivo involve frequent interactions of remote DNA segments, mediated by proteins. In order to gain insight into such interactions, quadruple-trap optical tweezers have been developed. This technique provides an unprecedented degree of control through the ability to independently manipulate two DNA molecules in three dimensions. In this way, discrete regions of different DNA molecules can be brought into contact with one another, with a well-defined spatial configuration. At the same time, the tension and extension of the DNA molecules can be monitored. Furthermore, combining quadruple-trap optical tweezers with microfluidics makes fast buffer exchange possible, which is important for in situ generation of the dual DNA-protein constructs needed for these kinds of experiments. In this way, processes such as protein-mediated inter-DNA bridging can be studied with unprecedented control. This chapter provides a step-by-step description of how to perform a dual DNA manipulation experiment using combined quadruple-trap optical tweezers and microfluidics.


Assuntos
DNA , Microfluídica/métodos , Hibridização de Ácido Nucleico/métodos , Pinças Ópticas , Sondas de DNA , Óptica e Fotônica/métodos
18.
Nature ; 535(7613): 566-9, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27437582

RESUMO

Non-homologous end joining (NHEJ) is the primary pathway for repairing DNA double-strand breaks (DSBs) in mammalian cells. Such breaks are formed, for example, during gene-segment rearrangements in the adaptive immune system or by cancer therapeutic agents. Although the core components of the NHEJ machinery are known, it has remained difficult to assess the specific roles of these components and the dynamics of bringing and holding the fragments of broken DNA together. The structurally similar XRCC4 and XLF proteins are proposed to assemble as highly dynamic filaments at (or near) DSBs. Here we show, using dual- and quadruple-trap optical tweezers combined with fluorescence microscopy, how human XRCC4, XLF and XRCC4-XLF complexes interact with DNA in real time. We find that XLF stimulates the binding of XRCC4 to DNA, forming heteromeric complexes that diffuse swiftly along the DNA. Moreover, we find that XRCC4-XLF complexes robustly bridge two independent DNA molecules and that these bridges are able to slide along the DNA. These observations suggest that XRCC4-XLF complexes form mobile sleeve-like structures around DNA that can reconnect the broken ends very rapidly and hold them together. Understanding the dynamics and regulation of this mechanism will lead to clarification of how NHEJ proteins are involved in generating chromosomal translocations.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Difusão , Humanos , Microscopia de Fluorescência , Movimento , Pinças Ópticas , Translocação Genética
19.
Nat Commun ; 6: 7304, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26084388

RESUMO

DNA intercalators are widely used as fluorescent probes to visualize DNA and DNA transactions in vivo and in vitro. It is well known that they perturb DNA structure and stability, which can in turn influence DNA-processing by proteins. Here we elucidate this perturbation by combining single-dye fluorescence microscopy with force spectroscopy and measuring the kinetics of DNA intercalation by the mono- and bis-intercalating cyanine dyes SYTOX Orange, SYTOX Green, SYBR Gold, YO-PRO-1, YOYO-1 and POPO-3. We show that their DNA-binding affinity is mainly governed by a strongly tension-dependent dissociation rate. These rates can be tuned over a range of seven orders of magnitude by changing DNA tension, intercalating species and ionic strength. We show that optimizing these rates minimizes the impact of intercalators on strand separation and enzymatic activity. These new insights provide handles for the improved use of intercalators as DNA probes with minimal perturbation and maximal efficacy.


Assuntos
DNA/química , Substâncias Intercalantes/química , DNA Polimerase Dirigida por DNA , Cinética , Quimografia
20.
Proc Natl Acad Sci U S A ; 111(42): 15090-5, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25288749

RESUMO

During recombinational repair of double-stranded DNA breaks, RAD51 recombinase assembles as a nucleoprotein filament around single-stranded DNA to form a catalytically proficient structure able to promote homology recognition and strand exchange. Mediators and accessory factors guide the action and control the dynamics of RAD51 filaments. Elucidation of these control mechanisms necessitates development of approaches to quantitatively probe transient aspects of RAD51 filament dynamics. Here, we combine fluorescence microscopy, optical tweezers, and microfluidics to visualize the assembly of RAD51 filaments on bare single-stranded DNA and quantify the process with single-monomer sensitivity. We show that filaments are seeded from RAD51 nuclei that are heterogeneous in size. This heterogeneity appears to arise from the energetic balance between RAD51 self-assembly in solution and the size-dependent interaction time of the nuclei with DNA. We show that nucleation intrinsically is substrate selective, strongly favoring filament formation on bare single-stranded DNA. Furthermore, we devised a single-molecule fluorescence recovery after photobleaching assay to independently observe filament nucleation and growth, permitting direct measurement of their contributions to filament formation. Our findings yield a comprehensive, quantitative understanding of RAD51 filament formation on bare single-stranded DNA that will serve as a basis to elucidate how mediators help RAD51 filament assembly and accessory factors control filament dynamics.


Assuntos
DNA de Cadeia Simples/química , Rad51 Recombinase/química , Núcleo Celular/metabolismo , Corantes Fluorescentes/química , Humanos , Funções Verossimilhança , Microfluídica , Microscopia de Fluorescência , Pinças Ópticas , RNA Interferente Pequeno/metabolismo , Recombinação Genética , Reprodutibilidade dos Testes , Processos Estocásticos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...